Design and Performance Analysis of Double Stator Axial Flux PM Generator for Rim Driven Marine Current Turbines

نویسندگان

  • Sofiane Djebarri
  • Jean-Frederic Charpentier
  • Franck Scuiller
  • Mohamed Benbouzid
  • Sofiane DJEBARRI
  • Jean-Frederic CHARPENTIER
  • Franck SCUILLER
  • Mohamed BENBOUZID
  • Jean Frédéric Charpentier
چکیده

This paper deals with the design and performance analysis of double stator axial flux permanent magnet generators for rim-driven marine current turbines (MCT). Indeed for submarine applications, drive train reliability is a key feature to reduce maintenance requirements. Rim-driven direct-drive multi-stator generators can therefore be a very interesting solution to improve this reliability. In this context, the presented work focus on the design of a double-stator axial flux permanent magnets (PM) generator as a rim-driven direct-drive multi-stator generator. The paper details the models, specifications and an optimization procedure that allow to preliminary design these kind of generators for rim-driven marine turbines. Thereafter, validations with finite elements computations and performance analysis considering particular design of rim driven generators are presented. The obtained results highlight some designs issues of PM generators for rim driven marine turbines. In order to assess the effectiveness of the double stator axial flux PM generator, a comparison with a designed surface mounted radial flux PM generator for rim marine turbines is carried out.. The comparison highlights that the double stator axial flux generator presents a better cooling and a reduced active parts cost and mass than the radial flux PM generator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and analysis of Axial Flux Permanent Magnet Generator for Direct-Driven Wind Turbines

Abstract: Axial flux permanent magnet generator (AFPMG) is can have one or two sided stator windings, meaning that the rotor disc of which the permanent magnet (PM) are mounted may be sandwiched in between two parallel stator discs. This paper deals with the development of AFPMG for a gearless wind energy system. This gives the axial air gap PM generator the potential for very high torque gener...

متن کامل

Double Layer Magnet Design Technique for Cogging Torque Reduction of Dual Rotor Single Stator Axial Flux Brushless DC Motor

Cogging torque is the major limitation of axial flux permanent magnet motors. The reduction of cogging torque during the design process is highly desirable to enhance the overall performance of axial flux permanent magnet motors. This paper presents a double-layer magnet design technique for cogging torque reduction of axial flux permanent magnet motor. Initially, 250 W, 150 rpm axial flux brus...

متن کامل

Experimental and 3D Finite Element Analysis of a Slotless Air-Cored Axial Flux PMSG for Wind Turbine Application

In this research paper, the performance of an air-cored axial flux permanent magnet synchronous generator is evaluated for low speed, direct drive applications using 3D finite element modeling and experimental tests. The structure of the considered machine consists of double rotor and coreless stator, which results in the absence of core losses, reduction of stator weight and elimination of cog...

متن کامل

Optimization of surface mounted axial flux switching generator with response surface method

In this paper, a novel structure of a axial flux switching machines for use in wind speed turbines at low speeds has been proposed, which in addition to the previous advantages, has a simple and economical design for the production of this type of machines. In this proposed machine, the magnets are placed on the surface of stator, and the three-phase winding is located in the space between the ...

متن کامل

Comparison of the Eccentricity Faults Effects on the Performance of several Toroidal Wounded Axial Flux Permanent Magnet Motors

Eccentricity fault is one the most common fault types of disk-type permanent magnet machines, which could lead to devastating effects. Unfortunately, most of the previous works have studied this fault and its detection techniques for slotted structure with common winding. Therefore, in this paper, the effects of eccentricity faults on the performance of single-sided slotted, single-sided slotle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017